Inflated distributions on the interval [0, 1]

Mikis Stasinopoulos, Marco Enea, Roberd A. Rigby, and Abu Hossain

April 27, 2017

Contents

1 Introduction 2

2 Distributions on (0, 1) 3
 2.1 Explicit distributions on (0, 1) 3
 2.2 Logit transform distributions on (0, 1) 3
 2.3 Truncated distributions on (0, 1) 4

3 Generating inflated distributions on [0, 1] 6

4 Plotting inflated distributions on [0, 1] 9

5 Fitting a distributions on [0, 1] 12
 5.1 The gamlssInf0to1() function 12
 5.2 Simulating data 13
 5.3 Fitting a distributions on [0, 1] 14
 5.4 Fitting a distributions on (0, 1) 21
 5.5 Fitting a distributions on [0, 1] 25

6 Fitting a regression model 29
 6.1 Simulating regression models on [0, 1] 29
 6.2 Fitting a regression model on [0, 1] 31
 6.3 Fitting alternative inflated distributions on [0, 1] 40
 6.3.1 Inflated logit family distributions on [0, 1] 40
 6.3.2 Inflated truncated distributions on [0, 1] 40
 6.3.3 Generalized Tobit model distributions on [0, 1] 41
 6.4 Fitting a regression model on (0, 1) 42
 6.5 Fitting a regression model on [0, 1] 46

7 Conclusions 49
1 Introduction

The new R package `gamlss.inf` is designed to fit inflated distributions on the interval $[0, 1]$ for a response variable. This allows the fitting of a response variable with a mixed (i.e., continuous and discrete) distribution which is continuous within the interval $(0, 1)$, with additional point probabilities at either 0 or 1 or both 0 and 1. The `gamlss` package, Rigby and Stasinopoulos [2005], Stasinopoulos and Rigby [2007] already provides the inflated beta distributions, BEINF_0 and BEINF_1 which allow the user to fit a beta distribution on $(0, 1)$, with extra point probabilities at 0 or 1 or both 0 and 1. The probabilities at the points 0 and 1 may depend on explanatory variables. Since the beta distribution has 2 parameters, the inflated beta, BEINF, (with the addition of the two probabilities at 0 and 1) has a total of 4 parameters. In practice, for complicated data sets, the part of the response which lies on $[0, 1]$ model that the new package BEINF_0 and BEINF_1 can fit can be written as:

$$
Y \overset{\text{ind}}{\sim} \mathcal{D}(\mu, \sigma, \nu, \tau, \xi_0, \xi_1)
$$

$$
\begin{align*}
\eta_1 &= g_1(\mu) = X_1\beta_1 + s_{11}(x_{11}) + \ldots + s_{1,J_1}(x_{1,J_1}) \\
\eta_2 &= g_2(\sigma) = X_2\beta_2 + s_{21}(x_{21}) + \ldots + s_{2,J_2}(x_{2,J_2}) \\
\eta_3 &= g_3(\nu) = X_3\beta_3 + s_{31}(x_{31}) + \ldots + s_{3,J_3}(x_{3,J_3}) \\
\eta_4 &= g_4(\tau) = X_4\beta_4 + s_{41}(x_{41}) + \ldots + s_{4,J_4}(x_{4,J_4}) \\
\eta_5 &= g_5(\xi_0) = X_5\beta_5 + s_{51}(x_{51}) + \ldots + s_{5,J_5}(x_{5,J_5}) \\
\eta_6 &= g_6(\xi_1) = X_6\beta_6 + s_{61}(x_{61}) + \ldots + s_{6,J_6}(x_{6,J_6})
\end{align*}
$$

where $\mathcal{D}(\mu, \sigma, \nu, \tau, \xi_0, \xi_1)$ is a zero and one inflated distribution of the response variable Y, defined on $[0, 1]$ including 0 and 1, where X_k are the design matrices incorporating the linear additive terms in the model, β_k are the linear coefficient parameters and $s_{kj}(x_{kj})$ represent smoothing functions for explanatory variables x_{kj}, for $k = 1, 2, 3, 4, 5, 6$ and $j = 1, \ldots, J_k$. Note that the quantitative explanatory variables in the X’s can be the same or different for the ones...
2 Distributions on (0, 1)

2.1 Explicit distributions on (0, 1)

Within the `gamlss.dist` package there are currently three distributions defined on (0, 1),
1. the beta distribution, BE, with two parameters,
2. the logit normal distribution, LOGITNO, with two parameters and
3. the generalised beta type 1 distribution, GB1, with four parameters.

2.2 Logit transform distributions on (0, 1)

In addition, any continuous random variable say Z defined on $(-\infty, \infty)$ can be transformed by the inverse logit transformation $Y = 1/(1 + \exp(-Z))$ to a random variable Y defined on (0, 1). For example, if Z is a t-family distributed variable, i.e. $Z \sim TF(\mu, \sigma, \nu)$, and the inverse logit transformation is applied, then $Y \sim \logitTF(\mu, \sigma, \nu)$, i.e. a logit-$t$ family distribution on (0, 1).

The following is an example on how to take a `gamlss.family` distribution on $(-\infty, \infty)$ and create a corresponding logit distribution defined on (0, 1). The `gamlss` function `gen.Family()` of the `gamlss.dist` package generates the d (pdf), p (cdf), q (inverse cdf) and r (random generation) functions of the distribution together with the function which can be used for fitting within `gamlss`. Here first generate a logit-t distribution and plot the distribution for different values of μ, σ and ν. Note that μ, σ and ν are defined on the original t-distribution ranges $(-\infty, \infty)$ for μ and $(0, \infty)$ for σ and ν. This implies that $1/(1 + \exp(-\mu))$ is not the mean of the logit distribution, logitTF, but its median. Also σ and ν are related to the scale and shape of the distribution. Below we use `gen.Family("TF", type="logit")` to generate a logit-t distribution and in Figure 1 we plot the distribution for different values of μ, σ and ν using the function `curve()`.

```r
# generate the distribution
library(gamlss)
gen.Family("TF", type="logit")
## A logit family of distributions from TF has been generated
## and saved under the names:
## dlogitTF plogitTF qlogitTF rlogitTF logitTF

# different mu
curve(dlogitTF(x, mu=-5, sigma=1, nu=10), 0,1, ylim=c(0,3), lwd=3, lty=2, col=2)
title("(a)")
curve(dlogitTF(x, mu=-1, sigma=1, nu=10), 0,1, add=TRUE, lwd=3, lty=3, col=3)
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0,1, add=TRUE, lwd=3, lty=4, col=4)
curve(dlogitTF(x, mu=1, sigma=1, nu=10), 0,1, add=TRUE, lwd=3, lty=5, col=5)
```

Figure 1
different mu
and the truncation parameter is 0 1
The type of truncation is both
and saved under the names:
A truncated family of distributions from SST has been generated
genNtrun
library
generate the distribution
gamlss.tr
at 1 to give a truncated distribution on (0,1) using the function
2.3 Truncated distributions on (0,1)
Figure 1 shows the different shapes the distribution can take. Panel (a) shows for fixed \(\sigma = 1 \) and \(\nu = 10 \) how the distribution changes for different values of \(\mu = (-5,-1,0,1,5) \). Panel (b) for fixed \(\mu = 0 \) and \(\nu = 10 \) varies \(\sigma = (0.5,1,2,5) \). Finally panel (c) fixes \(\mu = 0 \) and \(\sigma = 1 \) and varies \(\nu = (1,5,10,1000) \).

2.3 Truncated distributions on (0,1)

Any distribution defined on the real line \((-\infty, \infty)\) can be left truncated at 0 and right truncated at 1 to give a truncated distribution on (0,1) using the function gen.trun() from the R package gamlss.tr.

Figure 2

```r
curve(dlogitTF(x, mu=5, sigma=1, nu=1000), 0,1, add=TRUE, lwd=3, lty=2, col=2) title("(c)")
```
Figure 1: A logit-t distribution, \(\text{logitTF}(\mu, \sigma, \nu) \): (a) with values \(\mu = (-5, -1, 0, 1, 5) \), \(\sigma = 1 \) and \(\nu = 10 \), (b) with values \(\mu = 0 \), \(\sigma = (0.5, 1, 2, 5) \) and \(\nu = 10 \) and (c) with values \(\mu = 0 \), \(\sigma = 1 \) and \(\nu = (1, 5, 10, 1000) \).
One family on \((0, 1) \) takes as an argument a \texttt{gamlss.family} distribution defined on \((0, 1)\) and generates an inflated version of the distribution with point probabilities at 0 and/or 1 by including point probabilities at 0 and/or 1. The function \texttt{gen.Inf0to1()} takes as an argument a \texttt{gamlss.family} distribution on \((0, 1)\) and generates an inflated version of the distribution with point probabilities at 0 and/or 1. The function has two arguments, \texttt{family} and \texttt{type.of.Inflation}. The first specifies a distribution family on \((0, 1)\), while the second specifies the type of inflation. The options are i) "Zero", "One" and "Zero&One".

The resulting mixed continuous-discrete probability (density) function (pdf) for option "Zero&One"

3 Generating inflated distributions on \([0, 1]\)

Next it is shown how any continuous \texttt{gamlss.family} distribution defined on \((0, 1)\), obtained by any of the three methods of Section 2, can be extended by inflation to range \([0, 1]\) by including point probabilities at 0 and/or 1.

Similarly any distribution defined on the positive real line \((0, \infty)\) can be right truncated at one to give a truncated distribution on \((0, 1)\) using the function \texttt{gen.trun()}.

```r
legend("top",
    legend=c("mu = .1","mu = .5","mu = .9"),
    lty=2:4, col=2:4, cex=1, lwd=3)
# different sigma
curve(dSSTr(x, mu=.5, sigma=.1, nu=1, tau=10), 0,1, lwd=3, lty=2, col=2)
curve(dSSTr(x, mu=.5, sigma=.2, nu=1, tau=10), 0,1, lwd=3, lty=3, col=3, add=TRUE)
curve(dSSTr(x, mu=.5, sigma=.5, nu=1, tau=10), 0,1, lwd=3, lty=4, col=4, add=TRUE)
title("(b)"
legend("topleft",
    legend=c("sigma = .1","sigma = .2","sigma = .5"),
    lty=2:4, col=2:4, cex=1, lwd=3)
# different nu
curve(dSSTr(x, mu=.5, sigma=.2, nu=.1, tau=10), 0,1, lwd=3, lty=2, col=2)
curve(dSSTr(x, mu=.5, sigma=.2, nu=1, tau=10), 0,1, lwd=3, lty=3, col=3, add=TRUE)
curve(dSSTr(x, mu=.5, sigma=.2, nu=2, tau=10), 0,1, lwd=3, lty=4, col=4, add=TRUE)
title("(c)"
legend("topleft",
    legend=c("nu = .1","nu = 2","nu = .5"),
    lty=2:4, col=2:4, cex=1, lwd=3)
# different tau
curve(dSSTr(x, mu=.5, sigma=.2, nu=1, tau=3 ), 0,1, lwd=3, lty=2, col=2)
curve(dSSTr(x, mu=.5, sigma=.2, nu=1, tau=4), 0,1, lwd=3, lty=3, col=3, add=TRUE)
curve(dSSTr(x, mu=.5, sigma=.2, nu=1, tau=10), 0,1, lwd=3, lty=4, col=4, add=TRUE)
title("(d)"
legend("topleft",
    legend=c("tau = 3","tau = 4","tau = 10"),
    lty=2:4, col=2:4, cex=1, lwd=3)
```
Figure 2: A truncated SST distribution, $\text{SST}_\text{tr}(\mu, \sigma, \nu, \tau)$: (a) with values $\mu = (0.1, 0.5, 0.9)$, $\sigma = 0.1 \nu = 1$ and $\tau = 10$, (b) with values $\mu = 0.5$, $\sigma = (0.1, 0.2, 0.5)$, $\nu = 1$ and $\tau = 10$ (c) with values $\mu = 0.5$, $\sigma = 0.2$, $\nu = (0.1, 1, 2)$ and $\tau = 10$. (d) with values $\mu = 0.5$, $\sigma = 0.2$, $\nu = 1$ and $\tau = (3, 4, 10)$
is given by:

\[
 f_Y(y|\theta, \xi_0, \xi_1) = \begin{cases}
 p_0 & \text{if } y = 0 \\
 (1 - p_0 - p_1)f_W(y|\theta) & \text{if } 0 < y < 1 \\
 p_1 & \text{if } y = 1
 \end{cases}
\]

(2)

for \(0 \leq y \leq 1\), where \(f_W(y|\theta)\) is any probability density function defined on \((0, 1)\), i.e. for \(0 < y < 1\), with up to four parameters in \(\theta = (\theta_1, \theta_2, \theta_3, \theta_4)\) and \(0 < p_0 < 1\) and \(0 < p_0 + p_1 < 1\) and where \(\xi_0 = p_0/p_2\), \(\xi_1 = p_1/p_2\), where \(p_2 = 1 - p_0 - p_1\), so \(\xi_0 > 0\) and \(\xi_1 > 0\).

Hence

\[
 \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \begin{pmatrix} \xi_0 \\ \xi_1 \end{pmatrix}
 \begin{pmatrix} 1 + \xi_0 + \xi_1 \\ (1 + \xi_0 + \xi_1) \end{pmatrix}
\]

(3)

The default link functions for \(\xi_0\) and \(\xi_1\) in (2) are \(\eta_5 = \log(\xi_0)\) and \(\eta_6 = \log(\xi_1)\).

However for option "Zero" the pdf is

\[
 f_Y(y|\theta, 0, \xi_1) = \begin{cases}
 \xi_0 & \text{if } y = 0 \\
 (1 - \xi_0)f_W(y|\theta) & \text{if } 0 < y < 1 \\
 p_1 & \text{if } y = 1
 \end{cases}
\]

(4)

so in this case \(\xi_0 = P(Y = 0)\). The default link function for \(\xi_0\) in (4) is \(\eta_5 = \log \left[\frac{\xi_0}{1 - \xi_0} \right] \).

Also for option "One" the pdf is

\[
 f_Y(y|\theta, \xi_1, 1) = \begin{cases}
 (1 - \xi_1)f_W(y|\theta) & \text{if } 0 < y < 1 \\
 p_1 & \text{if } y = 1
 \end{cases}
\]

(5)

so in this case \(\xi_1 = P(Y = 1)\). The default link function for \(\xi_1\) in (5) is \(\eta_5 = \log \left[\frac{\xi_1}{1 - \xi_1} \right] \).

Note that, in the gamlss.inf implementation, \(\theta\) has at most 4 parameters, \(\theta^T = (\mu, \sigma, \nu, \tau)\).

In the example below first take the skew t-family distribution, SST, and use the gen.Family() function in the gamlss.dist package to generate the distribution logitSST defined on \((0, 1)\). By using the function gen.Inf0to1() on the new generated logitSST distribution, an inflated logitSST distribution, inflated at 0 and 1, is created.

```
library(gamlss.inf)
gen.Family(family="SST", type="logit")
## A logit family of distributions from SST has been generated
## and saved under the names:
## dlogitSST plogitSST qlogitSST rlogitSST logitSST

gen.Inf0to1(family="logitSST", type.of.Inflation="Zero&One")
## A 0to1 inflated logitSST distribution has been generated
## and saved under the names:
## dlogitSSTInf0to1 plogitSSTInf0to1 qlogitSSTInf0to1 rlogitSSTInf0to1
## plotlogitSSTInf0to1
```

There are five functions generated here for the logitSST distribution inflated at 0 and 1:

dlogitSSTInf0to1 The pdf of the distribution, d function.
The standard plotting functions of R can also be used to plot the created mixed distribution as is shown below. Figure 4 shows how the pdf, cdf, inverse cdf and randomisation functions can be displayed for different values of the distribution parameters.

```r
# plotting the pdf
curve(dlogitSSTInf0to1(x, mu=0, sigma=1, nu=1, tau=10, xi0=0.1, xi1=0.2),
     0.001, 0.999, ylab="pdf", main="(a)"

# getting the probabilities
p0 <- dlogitSSTInf0to1(x=0, mu=0, sigma=1, nu=0.8, tau=10, xi0=0.1, xi1=0.2)
p1 <- dlogitSSTInf0to1(x=1, mu=0, sigma=1, nu=0.8, tau=10, xi0=0.1, xi1=0.2)
points(c(0,1), c(p0,p1), col="blue")
lines(c(0,1), c(p0,p1), col="blue", type="h")

# plotting the cdf
curve(plogitSSTInf0to1(x, mu=0, sigma=1, nu=0.8, tau=10, xi0=0.1, xi1=0.2),
     0.001, 0.999, ylim=c(0,1), ylab="cdf", main="(b)"

# plotting the inverse cdf
curve(qlogitSSTInf0to1(x, mu=0, sigma=1, nu=0.8, tau=10, xi0=0.1, xi1=0.2),
     0.001, 0.999, ylim=c(0,1), ylab="inverse cdf", main="(c)"

# plotting simulated data
truehist(rlogitSSTInf0to1(1000, mu=0, sigma=1, nu=0.8, tau=10, xi0=0.1, xi1=0.2),
        main="(d)")
```

Figure 4

4 Plotting inflated distributions on [0, 1]

The newly created `plotlogitSSTInf0to1()` function can be used to plot the pdf of the inflated distribution (which is a mixed continuous-discrete distribution). Figure 3 shows the use of the `plotlogitSSTInf0to1()` function. The function plots the inflated distribution function including point probabilities at zero and one. Only one plot is allowed per figure. Figure 3 shows eight different realisations of the distribution for different values of the parameters.

```r
plotlogitSSTInf0to1(mu=1, sigma=1, nu=1, tau=10, xi0=0.1, xi1=0.2); title("(a)")
plotlogitSSTInf0to1(mu=0, sigma=1, nu=1, tau=10, xi0=0.1, xi1=0.2); title("(b)")
plotlogitSSTInf0to1(mu=0, sigma=2, nu=1, tau=10, xi0=0.1, xi1=0.2); title("(c)")
plotlogitSSTInf0to1(mu=0, sigma=1, nu=10, tau=0.1, xi0=0.1, xi1=0.2); title("(d)")
plotlogitSSTInf0to1(mu=0, sigma=1, nu=1, tau=3, xi0=0.1, xi1=0.2); title("(e)")
plotlogitSSTInf0to1(mu=0, sigma=1, nu=2, tau=3, xi0=0.5, xi1=1.1); title("(f)")
plotlogitSSTInf0to1(mu=0, sigma=1, nu=3, tau=100, xi0=0.1, xi1=0.5); title("(h)")
```

Figure 3
Figure 3: A logit-SST distribution: (a) with values $\mu = 1$, $\sigma = 1$, $\nu = 1$, $\tau = 10$, $\xi_0 = 0.1$, and $\xi_1 = 0.2$ (b) with values $\mu = -1$, $\sigma = 1$, $\nu = 1$, $\tau = 10$, $\xi_0 = 0.1$, and $\xi_1 = 0.2$ (c) with values $\mu = -1$, $\sigma = 2$, $\nu = 1$, $\tau = 10$, $\xi_0 = 0.1$, and $\xi_1 = 0.2$ (d) with values $\mu = 0$, $\sigma = 2$, $\nu = 1$, $\tau = 3$, $\xi_0 = 0.1$, and $\xi_1 = 0.2$ (e) with values $\mu = 0$, $\sigma = 1$, $\nu = 2$, $\tau = 3$, $\xi_0 = 0.5$, and $\xi_1 = 0.1$ (f) with values $\mu = 0$, $\sigma = 1$, $\nu = 2$, $\tau = 100$, $\xi_0 = 0.1$, and $\xi_1 = 0.5$.
Figure 4: The (a) pdf (b) cdf (c) inverse pdf and (d) simulated data from a logit-SST distribution inflated at 0 and 1 with $\mu = 0$, $\sigma = 1$, $\nu = .8$, $\tau = 10$, $\xi_0 = .1$, and $\xi_1 = .2$.

Note that in Figure 4(a) the probabilities p_0 and p_1 at 0 and 1, respectively, are given by equation (3), i.e. $p_0 = 0.077$ and $p_1 = 0.154$.

The next section demonstrates how to use the function `gamlssInf0to1()` in package `gamlss.inf` to fit a model which has a response variable on the interval $[0, 1]$ including 0 and/or 1.
5 Fitting a distributions on $[0, 1]$

5.1 The `gamlssInf0to1()` function

The main function for fitting a model with a response variable Y on the interval $[0, 1]$ including 0 and/or 1 is `gamlssInf0to1()`. In an inflated distribution the parameters μ, σ, ν and τ are orthogonal to the parameters ξ_0 and ξ_1 in the sense that the log-likelihood function can be factorised in two components, one containing μ, σ, ν and τ and another containing ξ_0 and ξ_1. This means that the two sets of parameters can be estimated separately. The function `gamlssInf0to1()` takes advantage of this separation and works as follows:

- It picks the argument `family` which defines a `gamlss.family` distribution defined on $(0, 1)$
- It checks the range of the response variable Y and depending on whether the range of the response variable Y is $[0, 1)$, $(0, 1]$ or $[0, 1]$, it creates an appropriate binary or multinomial response variable and it fits an appropriate GAMLSS model.
 - for $[0, 1)$ it fits a binary logistic model, using the `gamlss.family BI()` to response $Y_1 = 1$ (if $Y = 0$) + 0 (if $0 < Y < 1$)
 - for $(0, 1]$ it fits a binary logistic model, using the `gamlss.family BI()` to response $Y_1 = 1$ (if $Y = 1$) + 0 (if $0 < Y < 1$)
 - for $[0, 1]$ it fits a three level multinomial model, using the `gamlss.family MN3()` to response $Y_1 = 1$ (if $Y = 0$) + 2 (if $Y = 1$) + 3 (if $0 < Y < 1$)
- Fits a GAMLSS model to the data cases with Y inside $(0, 1)$ using the distribution defined by `family`, by weighting out the observations with zero and/or one.
- Creates the (normalised randomized) quantile residuals for the whole model
- Saves the output as a `gamlssInf0to1` object which is a subclass of a `gamlss` object.

The idea is that the object `gamlssInf0to1` should behave similar to a `gamlss` object. For this purpose the following S3 methods are created.

1. `fitted.gamlssInf0to1()`,
2. `coef.gamlssInf0to1()`,
3. `print.gamlssInf0to1()`,
4. `deviance.gamlssInf0to1()`,
5. `vcov.gamlssInf0to1()`,
6. `summary.gamlssInf0to1()`,
7. `predict.gamlssInf0to1()`,
8. `formula.gamlssInf0to1`.

The above methods are demonstrated in the next sections.

The function `gamlssInf0to1()` has the following arguments:

- `y` the response variable on $[0, 1]$ (including values at zero and/or one)
mu.formula a model formula for the μ parameter
sigma.formula a model formula for the σ parameter
nu.formula a model formula for the ν parameter
tau.formula a model formula for the τ parameter
xi0.formula a model formula for the ξ_0 parameter which is related to the probability at zero
xi1.formula a model formula for the ξ_1 parameter which is related to the probability at one
data a data frame containing the variables occurring in the formula.
family any gamlss() distribution family defined on (0,1)
weights a vector of prior weights as in gamlss()
trace logical, if TRUE information on model estimation will be printed during the fitting
... for extra arguments which can be passed to gamlss().

Since the individual models fitted within the algorithm used in gamlssInf0to1() are GAMLSS models, the parameter formulae above can take any linear or additive GAMLSS terms inclining smoothers and random effects.

To demonstrate the use of the gamlssInf0to1() function, simulated examples are used below. In the examples there are no explanatory variables. That is, in Sections 5.3, 5.4 and 5.5 below, a response from different inflated distributions on $[0,1)$, $(0,1]$ and $[0,1]$; respectively, is simulated and then a distribution is fitted to the response variable.

In Section 6 we use simulated data with one explanatory variable.

5.2 Simulating data

To compare the results obtained by the function gamlssInf0to1() to the ones obtained from standard gamlss() function, simulate data from the inflated beta distributions BEINF0, BEINF1, BEINF which generate data on $[0,1)$, $(0,1]$ and $[0,1]$ respectively.

```r
library(gamlss)  # loading gamlss package
library(gamlss.inf)
# creating data
set.seed(324)
y0 <- rBEINF0(1000, mu=.3, sigma=.3, nu=.15)# p0=0.13
y1 <- rBEINF1(1000, mu=.3, sigma=.3, nu=.15)# p1=0.13
y01 <- rBEINF(1000, mu=.3, sigma=.3, nu=0.1, tau=0.2) # p0=0.769, p1=0.1538
```

The mixed continuous-discrete probability (density) function of $Y \sim \text{BEINF}(\mu, \sigma, \nu, \tau)$ is given by

$$
 f_Y(y) = \begin{cases}
 p_0 & \text{if } y = 0 \\
 (1 - p_0 - p_1)f_W(y) & \text{if } 0 < y < 1 \\
 p_1 & \text{if } y = 1
\end{cases}
$$

(6)

for $0 \leq y \leq 1$, where $W \sim BE(\mu, \sigma)$ has a beta distribution with $0 < \mu < 1$ and $0 < \sigma < 1$ and $p_0 = \nu/(1 + \nu + \tau)$ and $p_1 = \tau/(1 + \nu + \tau)$. Hence $\nu = p_0/p_2$ and $\tau = p_1/p_2$ where
\(p_2 = 1 - p_0 - p_1 \). Since \(0 < p_0 < 1 \), \(0 < p_1 < 1 \) and \(0 < p_0 + p_1 < 1 \), hence \(\nu > 0 \) and \(\tau > 0 \). Here \(f_W(y) \) is a beta, BE\((\mu, \sigma)\), probability density function given by

\[
f_W(y) = \frac{1}{B(\alpha, \beta)} y^{\alpha-1} (1 - y)^{\beta-1}
\]

for \(0 < y < 1 \) where \(\alpha = \mu(1 - \sigma^2)/\sigma^2 \) and \(\beta = (1 - \mu)(1 - \sigma^2)/\sigma^2 \), with \(E(W) = \mu \) and \(Var(W) = \sigma^2 \mu(1 - \mu) \). Hence in (6),

\[
\begin{pmatrix}
\alpha \\
\beta \\
p_0 \\
p_1
\end{pmatrix} = \begin{pmatrix}
\frac{\mu(1 - \sigma^2)}{(1 - \mu)(1 - \sigma^2)} \\
\frac{\sigma^2}{\sigma^2} \\
\frac{1}{1 + \nu + \tau} \\
\frac{1}{1 + \nu + \tau}
\end{pmatrix}
\]

Hence

\[
\begin{pmatrix}
\mu \\
\sigma \\
\nu \\
\tau
\end{pmatrix} = \begin{pmatrix}
\frac{\alpha(\alpha + \beta)^{-1}}{(\alpha + \beta + 1)^{-1/2}} \\
\frac{\beta}{\beta^2} \\
\frac{\nu}{\tau^2}
\end{pmatrix}
\]

The default predictors are \(\eta_1 = \log(\mu/(1 - \mu)) \), \(\eta_2 = \log(\sigma/(1 - \sigma)) \), \(\eta_3 = \log(\nu) \) and \(\eta_4 = \log(\tau) \).

For \(Y \sim BEINFO(\mu, \sigma, \nu) \) set \(\tau = 0 \) (and hence \(p_1 = 0 \)) in the above probability (density) function (6). For \(Y \sim BEINFD(\mu, \sigma, \nu) \) set \(\nu = 0 \) (and hence \(p_0 = 0 \)) and then set \(\tau = \nu \) in the above probability (density) function (6).

In all three simulated examples \(W \) has a beta distribution with \(\mu = 0.3 \) and \(\sigma = 0.3 \). For the distribution on \([0, 1]\) the probability at zero is \(p_0 = \frac{\mu}{\mu + \nu} = 0.15/(1 + .15) = 0.1304348 \). For the distribution on \((0, 1)\) the probability at one is \(p_1 = \frac{\nu}{\mu + \nu} = 0.15/(1 + .15) = 0.1304348 \). For the distribution on \([0, 1]\) the probability at zero is \(p_0 = \frac{\nu}{\mu + \nu} = 0.1/(1 + 0.1 + 0.2) = 0.0769231 \) while the probability at one is \(p_1 = \frac{\nu}{\mu + \nu} = 0.2/(1 + 0.1 + 0.2) = 0.1538462 \). The sample proportions of zeros and ones in the sample are 0.123 for \([0, 1]\), 0.127 for \((0, 1)\) and \((0.07, 0.167)\) for \([0, 1]\). Next plot the three data sets using histdist().

\begin{verbatim}
library(MASS)
truehist(y0)
truehist(y1)
truehist(y01)
\end{verbatim}

5.3 Fitting a distributions on \([0, 1]\)

Below an inflated distribution at 0 is fitted using both gamlss() and gamlssInf0to1() functions. Note that the family argument in gamlssInf0to1() takes a gamlss.family distribution defined on \((0, 1)\). The trace=TRUE argument is used in gamlssInf0to1() to check the convergence of the two different models fitted, one using the BI family and the other using the BE.

\[
g0 <- gamlss(y0~1, family=BEINFO)
\]
Figure 5: Generated data using inflated beta distribution: with values $\mu = 0.3$, $\sigma = 0.3$, and $\nu = 0.15$ for the $\text{BEINF0}(\mu, \sigma, \nu)$ distribution on $[0,1)$, $\nu = 0.15$ for the $\text{BEINF1}(\mu, \sigma, \nu)$ distribution on $(0,1]$, and $\nu = 0.1$ and $\tau = 0.2$ for the $\text{BEINF}(\mu, \sigma, \nu, \tau)$ distribution on $[0,1]$.

R code on page 14
```r
t0 <- gamlssInf0to1(y=y0, mu.formula=~1, family=BE, trace=TRUE)
```

Note that the global deviance of the fitted t_0 model, using `gamlssInf0to1()`, is obtained by adding the individual deviances from the binomial and the beta model. The third fitted parameter in both models, is related to the the probability at zero. The third parameter is called ν (i.e. ν) in `gamlss` but ξ_0 (i.e. ξ_0) in `gamlssInf0to1()`. The coefficients for the predictor η_3 for the third parameter are the same for both model as shown below.

```r
coef(g0, "nu")
```

The two fitted coefficients for predictor η_3 are identical, but the fitted values for ν and ξ_0 are not the same because the parametrization used for the zero inflated distribution using `gamlssInf0to1()` is different from `gamlss()` using `BEINF0`. Next only the first element of the fitted values vector for the third parameter is displayed (since all values are identical because we fit a constant model).

```r
fitted(t0, "xi0")[1]
```

The difference in the fitted values of ξ_0, (ξ_0), and ν, (ν), above is due to the way the
two models are parametrized, since $\xi_0 = p_0$, while $\nu = p_0/(1 - p_0)$. `gamlssInf0to1()` fits a binary distribution model with a logit link for the binomial distribution parameter i.e. $\eta = \log[\xi_0/(1 - \xi_0)]$. The vector `fitted(t0, "xi0")` contains the fitted probabilities at zero. In the above example predictor $\eta = \beta_0 = -1.964$ is the coef(t0, "xi0") so $\xi_0 = 1/(1 + e^{-\beta_0}) = 1/(1 + e^{-1.964}) = \hat{p}_0 = 0.123$. In `gamlss()`, ν is fitted using a log link i.e. $\eta = \log(\nu)$. In the above example $\hat{\eta}_0 = \beta_0 = -1.964$ is the coef(g0, "nu"), so $\nu = e^{\hat{\eta}_0} = e^{1.964} = 0.1402509$ is the fitted value for ν. In `BEINF0` ν is defined as the odds ratio i.e. $\hat{\nu} = \hat{p}_0/(1 - \hat{p}_0)$ which implies that $\hat{p}_0 = \hat{\nu}/(1 + \hat{\nu})$ so again $\hat{p}_0 = 0.123$. This can be confirmed by:

```r
fitted(g0, "nu")[1]/(1+fitted(g0, "nu")[1])
```

which is the fitted probability of observing zero. The `summary()` function makes it clear that the two models use different link functions for the third parameters ν or ξ_0.

```
summary(t0)
## *******************************************************************
## Family: "InfBE"
## Call: gamlssInf0to1(y = y0, mu.formula = ~1, family = BE, trace = TRUE)
## Fitting method: RS()
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84294 0.02203 -38.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84659 0.02989 -28.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## xi0 link function: logit
## xi0 Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.96432 0.09628 -20.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Summary

Model Information
- **Family**: c("BEINF0", "Beta Inflated zero")
- **Call**: `gamlss(formula = y0 ~ 1, family = BEINF0)`
- **Fitting method**: RS()

Coefficients

Mu
- Estimate: \(-0.84294\)
- Std. Error: \(0.02203\)
- t value: \(-38.26\)
- Pr(>|t|): <2e-16 ***

Sigma
- Estimate: \(-0.84659\)
- Std. Error: \(0.02989\)
- t value: \(-28.32\)
- Pr(>|t|): <2e-16 ***

Nu
- Estimate: \(-1.96432\)
- Std. Error: \(0.09628\)
- t value: \(-20.4\)
- Pr(>|t|): <2e-16 ***

Model Statistics
- **No. of observations in the fit**: 1000
- **Degrees of Freedom for the fit**: 3
- **Residual Deg. of Freedom**: 997
The variance covariance matrix for the fitted g_0 and t_0 models can be obtained as follows:

\[
\text{vcov}(t_0)
\]

\[
\begin{array}{ccc}
(\text{Intercept}) & (\text{Intercept}) & (\text{Intercept}) \\
0.0004854761 & 0.0001292291 & 0.0000000000 \\
0.0001292291 & 0.0008936886 & 0.0000000000 \\
0.0000000000 & 0.0000000000 & 0.009270331
\end{array}
\]

\[
\text{vcov}(g_0)
\]

\[
\begin{array}{ccc}
(\text{Intercept}) & (\text{Intercept}) & (\text{Intercept}) \\
0.0004854761 & 0.0001292291 & 0.0000000000 \\
0.0001292291 & 0.0008936886 & 0.0000000000 \\
0.0000000000 & 0.0000000000 & 0.009270331
\end{array}
\]

Note the three columns (and three rows) in the estimated variance-covariance matrices above correspond to the predictor parameters $\eta_{kt} = \beta_{kt}$ for $k = 1, 2, 3$ for μ, σ and ζ_0 and $\eta_{kg} = \beta_{kg}$ for $g = 1, 2, 3$ for μ, σ and ν, where subscripts t and g indicate models t_0 and g_0; respectively.

Note that because of the partition of the likelihood function parameters μ and σ are orthogonal to ν or ζ_0.

The residuals for the two models should be identical for the non zero response values. Due to the randomization in the residuals at discrete values of the response variable (zero here), we expect differences between the two models in the residuals when the response is zero. This is demonstrated in the lower part of Figure 6 where the residuals are plotted against the observation index.

```
plot(resid(t0), pch="+")
points(resid(g0), col="red")
```

Next we will plot the fitted distribution in Figure 7. The standard BEINF0 distribution in gamlss.dist has its own plotting function called plotBEINF0() which can be used here. For the model fitted with gamlssInf0to1() such a function, plotBEInf0(), is created using the gen.Inf0to1() function.

```
# generate the beta distribution inflated at 0
gen.Inf0to1("BE", type="Zero")

# A 0 inflated BE distribution has been generated
# and saved under the names:
# dBEInf0 pBEInf0 qBEInf0 rBEInf0
# plotBEInf0
plotBEINF0(mu=fitted(g0, "mu"))[1], sigma=fitted(g0, "sigma")[1],
nu=fitted(g0, "nu"))[1], main="(a)", ylab="density")
```
Figure 6: Superimposed residuals from models $t\theta$ (+) and $g\theta$ (o). Because of the randomization in the residuals of the zero values of the response variable, the values of the residuals in the lower part of the plot are not identical.
Figure 7: The fitted distribution using (a) `gamlss()` and (b) `gamlssInf0to1()`

5.4 Fitting a distribution on \((0, 1]\)

Now the data inflated at 1 is analyzed.

```r
plotBEInf0(mu=fitted(t0, "mu")[1], sigma=fitted(t0, "sigma")[1],
           xi0=fitted(t0, "xi0")[1]); title("(b)")
```

The fitted distributions are identical.

```r
0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.5 1.0 1.5 2.0
```

R code on page 19
Again the two fitted coefficients in the predictors $\eta_t = \log [1/(1-\xi_1)] = \beta_1$ and $\eta_\nu = \log (\nu) = \beta_\nu$ are identical, but the fitted values for ξ_1 and ν are different because of the different link functions.

The vector fitted(t1, "xi1") contains the fitted probabilities at one. For example let $\hat{\beta}_1$ be the coef(t1, "xi1") then $\hat{\xi}_1 = 1/(1+e^{-\hat{\beta}_1}) = \hat{p}_1 = 0.127$. In gamlss, ν is fitted using the log link. Let $\hat{\beta}_\nu$ be the coef(g1, "nu") so $\hat{\nu} = e^{\hat{\beta}_\nu} = 0.1454754$. In BEINF1 ν is defined as the odds ratio for example $\hat{\nu} = \hat{p}_1/(1-\hat{p}_1)$ which implies that $\hat{p}_1 = \hat{\nu}/(1+\hat{\nu})$ so again $\hat{p}_0 = 0.127$. This can be confirmed by:

which is the fitted probability of observing one. The summary() function makes it clear that the two models use different link functions for the third parameters ν or ξ_1.

coef(t1, "xi1")
```
## (Intercept)
## -1.927748
```

fitted(t1, "xi1")
```
## [1] 0.127
```

fitted(g1, "nu")
```
## 1
## 0.1454754
```

summary(t1)
```
## *******************************************************************
## Family: "InfBE"
## Call: gamlssInf0to1(y = y1, mu.formula = ~1, family = BE)
## Fitting method: RS()
## *******************************************************************
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88074 0.02172 -40.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## *******************************************************************
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
```
(Intercept) -0.88122 0.02987 -29.5 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x1 link function: logit
x1 Coefficients:
(Intercept) -1.92775 0.09497 -20.3 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
No. of observations in the fit: 1000
Degrees of Freedom for the fit: 3
Residual Deg. of Freedom: 997
at cycle:
Global Deviance: -343.6318
AIC: -337.6318
SBC: -322.9085
summary(g1)
Family: c("BEINF1", "Beta Inflated one")
Call: gamlss(formula = y1 ~ 1, family = BEINF1)
Fitting method: RS()
Mu link function: logit
Mu Coefficients:
(Intercept) -0.88074 0.02172 -40.54 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sigma link function: logit
Sigma Coefficients:
(Intercept) -0.88122 0.02987 -29.5 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Nu link function: log

Nu Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | -1.92775 | 0.09497 | -20.3 | <2e-16 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

No. of observations in the fit: 1000

Degrees of Freedom for the fit: 3

Residual Deg. of Freedom: 997

Global Deviance: -343.6318

AIC: -337.6318

SBC: -322.9085

The variance covariance matrix for the fitted g_1 and t_1 models can be obtained as follows:

\[
\begin{bmatrix}
0.0004719565 & 0.0001297286 & 0.00000000 \\
0.0001297286 & 0.0008923410 & 0.00000000 \\
0.0000000000 & 0.0000000000 & 0.00901949
\end{bmatrix}
\]

The fitted distributions can be plotted as follows:

The fitted distributions are identical.

```r
vcov(t1)
## (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0004719565 0.0001297286 0.00000000
## (Intercept) 0.0001297286 0.0008923410 0.00000000
## (Intercept) 0.0000000000 0.0000000000 0.00901949

vcov(g1)
## (Intercept) (Intercept) (Intercept)
## (Intercept) 4.719565e-04 1.297286e-04 6.809254e-15
## (Intercept) 1.297286e-04 8.923410e-04 -5.303077e-14
## (Intercept) 6.809254e-15 -5.303077e-14 9.019490e-03
```

```r
# generate the

genInf0toQ("BE", type="One")

# A 1 inflated BE distribution has been generated

# and saved under the names:

# dBInf1 pBEInf1 qBEInf1 rBEInf1

# plotBEInf1

plotBEInf1(mu=fitted(g), "mu")[1], sigma=fitted(g, "sigma")[1],
nu=fitted(g, "nu")[1], main="(a)", ylab="density")

plotBEInf1(mu=fitted(t, "mu")[1], sigma=fitted(t, "sigma")[1],
x1=fitted(t, "x1")[1]); title("(b)")
```

The fitted distributions are identical.
5.5 Fitting a distributions on \([0, 1]\)

Now an inflated distribution on 0 and 1 is fitted using both \texttt{gamlss()} and \texttt{gamlssInf0to1()} functions

\begin{verbatim}
g01 <- gamlss(y01 ~ 1, family=BEINF)
GAMLSS-RS iteration 1: Global Deviance = 471.2145
GAMLSS-RS iteration 2: Global Deviance = 401.5136
GAMLSS-RS iteration 3: Global Deviance = 401.1247
GAMLSS-RS iteration 4: Global Deviance = 401.1241
t01 <- gamlssInf0to1(y=y01, mu.formula~1, family=BE)
AIC(g01,t01, k=0)
df AIC
g01 4 401.1241
t01 4 401.1241
\end{verbatim}

Note that in \texttt{gamlssInf0to()} it was not needed to specify that the distribution was on \([0, 1]\) because the function detected whether there are any zero and one values in the response variable and acts accordingly. The third and fourth fitted parameters in both models are related to the probabilities at zero and one. They are called \(\nu\) and \(\tau\) in \texttt{gamlss} but \(\xi_0\) and \(\xi_1\) in \texttt{gamlssInf0to1()}.

\begin{verbatim}
coef(g01, "nu")
(Intercept)
-2.388763

coef(t01, "xi0")
\end{verbatim}
The fitted coefficients are (almost) identical for ν and ξ_0 and also for τ and ξ_1. Now look at the fitted values.

<table>
<thead>
<tr>
<th>fitted(t01, "xi0")[1]</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>fitted(g01, "nu")[1]</td>
<td>0.09174455</td>
</tr>
<tr>
<td>fitted(t01, "xi1")[1]</td>
<td>1</td>
</tr>
<tr>
<td>fitted(g01, "tau")[1]</td>
<td>0.2188729</td>
</tr>
</tbody>
</table>

Note that contrary to the models with only zero or only one in the response variable, the models on $[0, 1]$ use the same parametrization so the fitted values are identical. In fact here the parameters are related to the probabilities at zero and one as

$$\xi_0 = \nu = \frac{p_0}{1 - p_0 - p_1}$$

and

$$\xi_1 = \tau = \frac{p_1}{1 - p_0 - p_1}$$

so

$$p_0 = \frac{\xi_0}{1 + \xi_0 + \xi_1} = \frac{\nu}{(1 + \nu + \tau)}$$

and

$$p_1 = \frac{\xi_1}{1 + \xi_0 + \xi_1} = \frac{\tau}{(1 + \nu + \tau)}.$$

This can be verified by:

```r
# probability for y=0
fitted(g01, "nu")[1]/(1+fitted(g01, "nu")+fitted(g01, "tau"))[1]
```
fitted(t01, "xi0")[1]/(1+fitted(t01, "xi0")+fitted(t01, "xi1"))[1]

fitted(g01, "tau")[1]/(1+fitted(g01, "nu")+fitted(g01, "tau"))[1]

fitted(t01, "xi1")[1]/(1+fitted(t01, "xi0")+fitted(t01, "xi1"))[1]

The summary() produces the same results for both models, so only t01 is represented here.

summary(t01)
The variance covariance matrix for the fitted \texttt{g01} and \texttt{t01} models is for all practical purposes identical.

\begin{verbatim}
vcov(t01)
(Intercept) (Intercept) (Intercept) (Intercept)
(Intercept) 0.0001057378 0.0000000000 0.000000000 0.0000000000
(Intercept) 0.00001350223 0.0000000000 0.000000000 0.0000000000
(Intercept) 0.0000000000 0.0000000000 0.015596125 0.001310618
(Intercept) 0.0000000000 0.0000000000 0.001310618 0.007298641

vcov(g01)
(Intercept) (Intercept) (Intercept) (Intercept)
(Intercept) 5.107378e-04 1.350223e-04 1.496297e-14 1.257393e-15
(Intercept) 1.350223e-04 1.012576e-03 1.122123e-13 9.429604e-15
(Intercept) 1.496297e-14 1.122123e-13 1.559632e-02 1.310616e-03
(Intercept) 1.257393e-15 9.429604e-15 1.310616e-03 7.298640e-03
\end{verbatim}

Because of the randomization of the residuals when the response variable takes values at zero and one, the residuals differ when the response variable is at those values, as is shown in Figure 9 where the residuals are plotted against the observation index.

\begin{verbatim}
plot(resid(t01), pch="+")
points(resid(g01), col="red")
\end{verbatim}

The fitted distributions are plotted next.

\begin{verbatim}
generate the
gen.Inf0to1(“BE”, type="Zero&One")
\end{verbatim}
example, we will simulate from some saved functions from a real data analysis.

6 Fitting a regression model

The fitted distributions are identical.

Figure 9: Superimposed residuals form models t_{01} (+) and g_{01} (o). Because of the randomization the values differ when the response is at zero and one.

```r
### A 0to1 inflated BE distribution has been generated
### and saved under the names:
### dBInf0to1 pBInf0to1 qBInf0to1 rBInf0to1
### plotBInf0to1

plotBEINF(mu=fitted(g01, "mu")[1], sigma=fitted(g01, "sigma")[1], 
           nu=fitted(g01, "nu")[1], tau=fitted(g01, "tau")[1],
           main="(a)", ylab="density")
plotBEInf0to1(mu=fitted(t01, "mu")[1], sigma=fitted(t01, "sigma")[1],
              xi0=fitted(t01, "xi0")[1], xi1=fitted(t01, "xi1")[1])
title("(b)")
```

The fitted distributions are identical.

6 Fitting a regression model

6.1 Simulating regression models on $[0, 1]$

We first generate the values for the explanatory variable x and then create four different functions of x for the parameters μ, σ, ν and τ, respectively, of the beta inflated distributions ($BEINF0$, $BEINF1$ and $BEINF$). Since we would like the simulated data to look as a real data example, we will simulate from some saved functions from a real data analysis.
Figure 10: The fitted distribution using (a) `gamlss()` and (b) `gamlssInf0to1()`

Figure 11 displays those functions.

```r
# generating x ------------
set.seed(3210)
x <- (runif(1000)*4)-2
range(x)
## [1] -1.995186 1.999197
data(sda)
fmu <- splinefun(sda$x, sda$mu)
curve(fmu, -2,2)
fsigma <- splinefun(sda$x, sda$sigma)
curve(fsigma, -2,2)
fnu <- splinefun(sda$x, sda$nu)
curve(fnu, -2,2)
ftau <- splinefun(sda$x, sda$tau)
curve(ftau, -2,2)
```

Next we generate three different response variables, \(y_0, y_1 \) and \(y_01 \), from a beta inflated distribution with values defined on \([0,1), (0,1] \) and \([0,1] \) respectively. Figure 12 shows the three different response variables \(y \) against \(x \).

```r
# generating x ------------
set.seed(1234)
y0 <- rBEINF0(1000, mu=fmu(x), sigma=fsigma(x), nu=fnu(x))
y1 <- rBEINF1(1000, mu=fmu(x), sigma=fsigma(x), nu=ftau(x))
y01 <- rBEINF(1000, mu=fmu(x), sigma=fsigma(x), nu=fnu(x), tau=ftau(x))
# plotting the y's
plot(x,y0, col="darkgray")
```
Figure 11: Showing the four functions used for the simulation of the data in this section. From top left to bottom right we have the functions for μ, σ, ν and τ.

```R
plot(x,y1, col="darkgray")
plot(x,y01, col="darkgray")
```

6.2 Fitting a regression model on [0,1]

We start with the data shown in the top left of Figure 12. We will fit a beta inflated at zero distribution using the functions `gamlss()`. The `gamlss.dist` package has two functions for using the beta inflated at zero distribution: `BEINF0` and `BEZI`. Their parametrization is slightly different. The same model will be also fitted using `gamlssIng0to1()` function. Since in general the type of relationship existing between the parameters and the explanatory variable is unknown we will use smooth functions for x. In the following code we used the P-spline smoother implemented in the additive term function `pb()`.

```R
g0p <- gamlss(y0~pb(x), sigma.fo="pb(x)", nu.fo="pb(x)", family=BEINF0)
```

```R
## GAMLSS-RS iteration 1: Global Deviance = -1826.759
## GAMLSS-RS iteration 2: Global Deviance = -2508.671
## GAMLSS-RS iteration 3: Global Deviance = -2799.86
## GAMLSS-RS iteration 4: Global Deviance = -2845.529
## GAMLSS-RS iteration 5: Global Deviance = -2846.434
## GAMLSS-RS iteration 6: Global Deviance = -2846.404
## GAMLSS-RS iteration 7: Global Deviance = -2846.388
## GAMLSS-RS iteration 8: Global Deviance = -2846.387
## GAMLSS-RS iteration 9: Global Deviance = -2846.386
```
Figure 12: Showing the response variable against the single explanatory variable x for the three simulated data sets from beta inflated distributions (BEINF0, BEINF1 and BEINF). The response variables are y_0, y_1 and y_{01}, with values defined on $[0,1)$, $(0,1]$ and $[0,1]$, respectively.
g0p1 <- gamlss(y0 ~ pb(x), sigma.fo = ~ pb(x), nu.fo = ~ pb(x), family = BEZI)

GAMLSS-RS iteration 1: Global Deviance = -1076.408
GAMLSS-RS iteration 2: Global Deviance = -1935.656
GAMLSS-RS iteration 3: Global Deviance = -2505.354
GAMLSS-RS iteration 4: Global Deviance = -2842.939
GAMLSS-RS iteration 5: Global Deviance = -2846.26
GAMLSS-RS iteration 6: Global Deviance = -2846.208
GAMLSS-RS iteration 7: Global Deviance = -2846.191
GAMLSS-RS iteration 8: Global Deviance = -2846.191
GAMLSS-RS iteration 9: Global Deviance = -2846.191
GAMLSS-RS iteration 10: Global Deviance = -2846.191

t0p <- gamlssInf0toQ(y = y0, mu.fo = ~ pb(x), sigma.fo = ~ pb(x), xi0.fo = ~ pb(x), family = "BE", trace = TRUE)

***** The binomial model *****
GAMLSS-RS iteration 1: Global Deviance = 277.5741
GAMLSS-RS iteration 2: Global Deviance = 278.5096
GAMLSS-RS iteration 3: Global Deviance = 278.6246
GAMLSS-RS iteration 4: Global Deviance = 278.6555
GAMLSS-RS iteration 5: Global Deviance = 278.6632
GAMLSS-RS iteration 6: Global Deviance = 278.6652
GAMLSS-RS iteration 7: Global Deviance = 278.6656
***** The continuous distribution model *****
GAMLSS-RS iteration 1: Global Deviance = -2104.597
GAMLSS-RS iteration 2: Global Deviance = -2787.287
GAMLSS-RS iteration 3: Global Deviance = -3078.498
GAMLSS-RS iteration 4: Global Deviance = -3124.185
GAMLSS-RS iteration 5: Global Deviance = -3125.097
GAMLSS-RS iteration 6: Global Deviance = -3125.069
GAMLSS-RS iteration 7: Global Deviance = -3125.054
GAMLSS-RS iteration 8: Global Deviance = -3125.052
GAMLSS-RS iteration 9: Global Deviance = -3125.052
The Final Global Deviance = -2846.386

AIC(g0p, g0p1, t0p)

df AIC
g0p1 13.26330 -2819.664
g0p 13.39814 -2819.590
t0p 13.39823 -2819.590

summary(t0p)

**
Family: "InfBE"
##
Call:
gamlssInf0to1(y = y0, mu.formula = ~ pb(x), sigma.formula = ~ pb(x),
xi0.formula = ~ pb(x), family = "BE", trace = TRUE)
Fitting method: RS()
Mu link function: logit
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.52210 0.01373 110.86 <2e-16 ***
pb(x) 0.93845 0.01322 71.01 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sigma link function: logit
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.77953 0.02739 -64.977 <2e-16 ***
pb(x) -0.24929 0.02500 -9.971 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
xi0 link function: logit
xi0 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.2907 0.4914 -8.731 < 2e-16 ***
pb(x) -1.8306 0.3177 -5.762 1.11e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
NOTE: Additive smoothing terms exist in the formulas:
i) Std. Error for smoothers are for the linear effect only.
ii) Std. Error for the linear terms maybe are not accurate.

No. of observations in the fit: 1000
Degrees of Freedom for the fit: 13.39823
Residual Deg. of Freedom: 986.6018
at cycle:
Global Deviance: -2846.386
AIC: -2819.59
SBC: -2753.835

The three models have similar deviances as we would expect. Do not try to interpret the coefficients and the standard errors of the smoothing functions in the summary table. They are for the linear term in the variable \(x \) and are here as a consequence of how the model is fitted.
within the `gamlss()` algorithm. They do not indicate the coefficients and the standard errors of the smoothing functions. To check whether the smoothing function as a whole is significant use the function `drop1()`. In our case, since we are dealing with simulated data, we can actually plot both the true functions and the fitted functions against \(x \). Note that the fitted values for the parameters \(\mu \) and \(\sigma \) are identical in both fitted models. The third fitted distribution parameter, \(\nu \) or \(\xi_0 \) is different for the two fitted models. In model \(t0p \) the fitted values of \(\xi_0 \) are probabilities of being zero \(p_0 \), since \(\xi_0 = p_0 \), while in model \(g0p \) the fitted values for \(\nu \) are odds since \(\nu = p_0 / (1 - p_0) \). Figure 13 plots the true and fitted functions (for models \(g0p \) or \(t0p \)) for \(\mu \), \(\sigma \) and \(\nu \) (or \(\xi_0 / (1 - \xi_0) \)).

Note that the `term.plot()` function is not working for models fitted through the `gamlssInf0to1()` function. The `term.plotInf0to1()` can be used instead. Figure 14 shows the fitted additive terms using the `gamlss BEINF0` fit on the left and the `gamlssInf0to1` fit on the right. The plots are identical.

![Figure 13](image1.png)

![Figure 14](image2.png)

![Figure 15](image3.png)
Figure 13: Showing the function from which the data were simulated from together with the fitted smooth function for μ, σ and ν [or $\xi_0/(1 - \xi_0)$]. The solid black line is the true function. The dashed line is the fitted values from both models $g\theta p$ and $t\theta p$ since they are identical.
Figure 14: Showing the fitted additive predictors for μ, σ and ν (or ξ_0) and their approximate 95% confidence bands for models fitted using the function `gamlss()` on the left and using the function `gamlssInf0to1()` on the right.
Filliben correlation coefficient = 0.9994537

```r
wp(t0p)
#par(mar = c(0,1,0,1))
Q.stats(t0p, xvar=x)
```

Q.stats

<table>
<thead>
<tr>
<th></th>
<th>Z1</th>
<th>Z2</th>
<th>Z3</th>
<th>Z4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.9951 to -1.5610</td>
<td>0.64460452</td>
<td>-0.88922346</td>
<td>0.474012315</td>
<td>0.39101311</td>
</tr>
<tr>
<td>-1.5610 to -1.1041</td>
<td>0.21257491</td>
<td>1.29206569</td>
<td>-1.280238090</td>
<td>0.34594471</td>
</tr>
<tr>
<td>-1.1041 to -0.6811</td>
<td>0.39730531</td>
<td>-0.69702195</td>
<td>2.134276198</td>
<td>1.17349835</td>
</tr>
<tr>
<td>-0.6811 to -0.2796</td>
<td>0.15066631</td>
<td>0.72668969</td>
<td>-1.09040296</td>
<td>0.0958706</td>
</tr>
<tr>
<td>-0.2796 to 0.1875</td>
<td>0.15066631</td>
<td>0.72668969</td>
<td>-1.09040296</td>
<td>0.0958706</td>
</tr>
<tr>
<td>0.1875 to 0.4996</td>
<td>0.49962794</td>
<td>-0.88303713</td>
<td>0.39489446</td>
<td>0.85845486</td>
</tr>
<tr>
<td>0.4996 to 0.8796</td>
<td>0.17006367</td>
<td>-0.80424372</td>
<td>-1.188046016</td>
<td>1.74570047</td>
</tr>
<tr>
<td>0.8796 to 1.1898</td>
<td>0.70570965</td>
<td>-0.08142732</td>
<td>-0.283852346</td>
<td>-0.42599972</td>
</tr>
<tr>
<td>1.1898 to 1.5859</td>
<td>-0.98965419</td>
<td>0.43048708</td>
<td>-0.006917952</td>
<td>0.84419299</td>
</tr>
<tr>
<td>1.5859 to 1.9992</td>
<td>0.22449057</td>
<td>0.28433908</td>
<td>-0.120591925</td>
<td>-0.73788560</td>
</tr>
<tr>
<td>TOTAL Q stats</td>
<td>2.46502222</td>
<td>5.54790604</td>
<td>14.045456374</td>
<td>12.35184739</td>
</tr>
<tr>
<td>df for Q stats</td>
<td>3.11764466</td>
<td>8.08165435</td>
<td>10.000000000</td>
<td>10.00000000</td>
</tr>
<tr>
<td>p-val for Q stats</td>
<td>0.50296796</td>
<td>0.70548969</td>
<td>0.170928282</td>
<td>0.26219852</td>
</tr>
</tbody>
</table>

AgostinoK2

<table>
<thead>
<tr>
<th></th>
<th>AgostinoK2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.9951 to -1.5610</td>
<td>0.3775789</td>
<td>100</td>
</tr>
<tr>
<td>-1.5610 to -1.1041</td>
<td>1.7586873</td>
<td>100</td>
</tr>
<tr>
<td>-1.1041 to -0.6811</td>
<td>5.9322333</td>
<td>100</td>
</tr>
<tr>
<td>-0.6811 to -0.2796</td>
<td>1.1998701</td>
<td>100</td>
</tr>
<tr>
<td>-0.2796 to 0.1875</td>
<td>6.8378949</td>
<td>100</td>
</tr>
<tr>
<td>0.1875 to 0.4996</td>
<td>4.2938405</td>
<td>100</td>
</tr>
<tr>
<td>0.4996 to 0.8796</td>
<td>4.4589235</td>
<td>100</td>
</tr>
<tr>
<td>0.8796 to 1.1898</td>
<td>0.2620479</td>
<td>100</td>
</tr>
<tr>
<td>1.1898 to 1.5859</td>
<td>0.7127097</td>
<td>100</td>
</tr>
<tr>
<td>1.5859 to 1.9992</td>
<td>0.5590176</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL Q stats</td>
<td>26.3973037</td>
<td>1000</td>
</tr>
<tr>
<td>df for Q stats</td>
<td>20.0000000</td>
<td>0</td>
</tr>
<tr>
<td>p-val for Q stats</td>
<td>0.1508750</td>
<td>0</td>
</tr>
</tbody>
</table>

```r
#par(mar = c(0,0,1,0))
centiles_Inf0toQ(t0p, xvar=x)
```

centiles

<table>
<thead>
<tr>
<th></th>
<th>0.4 centile</th>
<th>2 centile</th>
<th>10 centile</th>
<th>25 centile</th>
<th>50 centile</th>
<th>75 centile</th>
<th>90 centile</th>
<th>95 centile</th>
<th>99.6 centile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8</td>
<td>9.6</td>
<td>15.5</td>
<td>28.1</td>
<td>52.2</td>
<td>75.8</td>
<td>89.5</td>
<td>97.5</td>
<td>99.7</td>
</tr>
</tbody>
</table>

38
Figure 15: Showing the diagnostic plots created by `plot()`, `wp()`, and `Q.stats()`, and centile curves produced by `centile.Inf0to1()`.
6.3 Fitting alternative inflated distributions on \([0,1]\)

6.3.1 Inflated logit family distributions on \([0,1]\)

The function \(\text{gamlssInf0to1()}\) can be used with a logit transformed zero to one distribution or with a truncated zero to one distribution. The following code shows how an inflated logit transformed zero to one distribution can be fitted:

```r
# generate a logit transformed distribution from 0 to 1
gen.Family("SST", "logit")

## A logit family of distributions from SST has been generated
## and saved under the names:
## dlogitSST plogitSST qlogitSST rlogitSST logitSST

# fit the model
T0SST <- gamlssInf0toQ(y=y0, mu.fo="pb(x)", sigma.fo="pb(x)",
                        xi0.fo="pb(x)", family="logitSST")
```

6.3.2 Inflated truncated distributions on \([0,1]\)

Here we demonstrate how an inflated truncated zero to one distribution can be fitted.

```r
# generate a truncated distribution from 0 to 1
library(gamlss.tr)
gen.trun(c(0,1), "SST", type="both")

## A truncated family of distributions from SST has been generated
## and saved under the names:
## dSSTtr pSSTtr qSSTtr rSSTtr SSTtr
## The type of truncation is both
## and the truncation parameter is 0 1

# fit the model
T0SSTtr <- gamlssInf0toQ(y=y0, mu.fo="pb(x)", sigma.fo="pb(x)",
                         xi0.fo="pb(x)", family="SSTtr")
```

As we would generally expect, since we have generated the data using the beta distribution inflated at 0, the two extra fitted models performed worst according to criterion AIC.

Note that \(\text{logitSST}(\mu, \sigma, \nu, \tau)\) and \(\text{SSTtr}(\mu, \sigma, \nu, \tau)\) distributions have four parameters so their corresponding inflated at 0 distributions have five parameters (including the extra \(\xi_0 = p_0\)). Hence models \(T0SST\) and \(T0SSTtr\) above can include models for parameters \(\nu\) and \(\tau\), e.g., \(\text{nu.fo=pb(x)}\) and \(\text{tau.fo=pb(x)}\), as well models for \(\mu, \nu\) and \(\xi_0\).
6.3.3 Generalized Tobit model distributions on $[0,1)$

In general for a restricted values response variable, that is, having a distribution with a restricted range, the Tobit model (which requires a survival analysis response variable), can be appropriate. Here we show how this model can be fitted within `gamlss`. Note though that for Tobit model the probability at zero is not modelled independently as a function of explanatory variables but is equal to the probability of being censored below zero. For more details see Hossain et al. [2016a] and Hossain et al. [2016b]. Below we fit a Tobit normal and a Tobit SST model both left censored at 0 to provide a point probability at 0.

```r
library(survival)
y0surv <- Surv(y0, y0!=0, type="left")
# creating the distribution
library(gamlss.cens)
# Gaussian
gen.cens("NO", type="left")
## A censored family of distributions from NO has been generated
## and saved under the names:
## dNOlc pNOlc qNOlc NOlc
## The type of censoring is left
# SST distribution
gen.cens("SST", type="left")
## A censored family of distributions from SST has been generated
## and saved under the names:
## dSTlc pSTlc qSTlc STlc
## The type of censoring is left
# fitting the model
# Tobit model
s0no <- gamlss( y0surv ~ pb(x), sigma.formula="pb(x), family=NOlc)"
## GAMLSS-RS iteration 1: Global Deviance = -1923.728
## GAMLSS-RS iteration 2: Global Deviance = -1923.348
## GAMLSS-RS iteration 3: Global Deviance = -1923.369
## GAMLSS-RS iteration 4: Global Deviance = -1923.371
## GAMLSS-RS iteration 5: Global Deviance = -1923.372
# generalized Tobit
s0sst <- gamlss( y0surv ~ pb(x), sigma.formula="pb(x), family=SSTlc)"
## GAMLSS-RS iteration 1: Global Deviance = -1356.215
## GAMLSS-RS iteration 2: Global Deviance = -1809.66
## GAMLSS-RS iteration 3: Global Deviance = -1878.17
## GAMLSS-RS iteration 4: Global Deviance = -1921.45
## GAMLSS-RS iteration 5: Global Deviance = -1944.657
## GAMLSS-RS iteration 6: Global Deviance = -1956.981
## GAMLSS-RS iteration 7: Global Deviance = -1963.848
```

41
GAMLSS-RS iteration 8: Global Deviance = -1967.505
GAMLSS-RS iteration 9: Global Deviance = -1969.736
GAMLSS-RS iteration 10: Global Deviance = -1970.959
GAMLSS-RS iteration 11: Global Deviance = -1971.647
GAMLSS-RS iteration 12: Global Deviance = -1972.008
GAMLSS-RS iteration 14: Global Deviance = -1972.229
GAMLSS-RS iteration 15: Global Deviance = -1972.169
GAMLSS-RS iteration 16: Global Deviance = -1972.169
GAMLSS-RS iteration 17: Global Deviance = -1972.127
GAMLSS-RS iteration 18: Global Deviance = -1972.083
GAMLSS-RS iteration 19: Global Deviance = -1972.044
GAMLSS-RS iteration 20: Global Deviance = -1972.009

Warning in RS(): Algorithm RS has not yet converged

\[\text{gaic}(g_0 p, t_0 p, t_0 sst, t_0 ssttr, s_0 no, s_0 sst) \]

<table>
<thead>
<tr>
<th>df</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.398137</td>
<td>-2819.590</td>
</tr>
<tr>
<td>13.398227</td>
<td>-2819.590</td>
</tr>
<tr>
<td>16.115402</td>
<td>-2812.341</td>
</tr>
<tr>
<td>9.853711</td>
<td>-2173.978</td>
</tr>
<tr>
<td>6.267237</td>
<td>-1959.475</td>
</tr>
<tr>
<td>12.274416</td>
<td>-1898.823</td>
</tr>
</tbody>
</table>

Note that the model fitting for \(s_0 sst \) has not quite converged. To obtain convergence use the argument \(n.\text{cyc} \) but be warned that it needs 885 iteration to converge. The Tobit models do not perform as well as the inflated models in this case, which is not surprising since the data were simulated from a beta inflated distribution, \(\text{BEINF0}(\mu, \sigma, \nu) \). The \(\text{SSTlc}(\mu, \sigma, \nu, \tau) \) distribution has four parameters. Hence model \(s_0 sst \) can include models for parameters \(\nu \) and \(\tau \).

6.4 Fitting a regression model on \([0, 1]\)

To model the data used on the right top side of Figure 12, we will use the same type of models as in the previous section, but this time inflated at one. The models are:

- the \(\text{BEINF1} \) distribution using `gamlss()`
- the \(\text{BEOI} \) distribution using `gamlss()`
- the beta inflated using `gamlssInf0to1()`
- the inflated logitSST using `gamlssInf0to1()`
- the inflated truncated SST using `gamlssInf0to1()`
- Tobit NO using `gamlss()`
- Tobit SST using `gamlss()`

```r
# BEINF1
g1p <- gamlss(y1~pb(x), sigma.fo="pb(x), nu.fo="pb(x), family=BEINF1)
```
GAMLSS-RS iteration 1: Global Deviance = -1533.075
GAMLSS-RS iteration 2: Global Deviance = -2151.917
GAMLSS-RS iteration 3: Global Deviance = -2346.826
GAMLSS-RS iteration 4: Global Deviance = -2371.192
GAMLSS-RS iteration 5: Global Deviance = -2371.563
GAMLSS-RS iteration 6: Global Deviance = -2371.562
GAMLSS-RS iteration 7: Global Deviance = -2371.561

BEOI

\[g_{1p1} \leftarrow \text{gamlss}(y_1^\prime \text{pb}(x), \text{sigma.fo}^\prime \text{pb}(x), \text{nu.fo}^\prime \text{pb}(x), \text{family} = \text{BEOI}) \]

GAMLSS-RS iteration 1: Global Deviance = -818.9885
GAMLSS-RS iteration 2: Global Deviance = -1709.734
GAMLSS-RS iteration 3: Global Deviance = -2162.788
GAMLSS-RS iteration 4: Global Deviance = -2340.568
GAMLSS-RS iteration 5: Global Deviance = -2370.671
GAMLSS-RS iteration 6: Global Deviance = -2371.544
GAMLSS-RS iteration 7: Global Deviance = -2371.543
GAMLSS-RS iteration 8: Global Deviance = -2371.543

BE inflated at 1

\[t_{1p} \leftarrow \text{gamlssInf0toQ}(y = y_1, \text{mu.fo} = \text{pb}(x), \text{sigma.fo} = \text{pb}(x), \text{xi1.fo} = \text{pb}(x), \text{trace} = \text{TRUE}, \text{family} = \text{"BE"}) \]

***** The binomial model *****
GAMLSS-RS iteration 1: Global Deviance = 420.6815
GAMLSS-RS iteration 2: Global Deviance = 419.762
GAMLSS-RS iteration 3: Global Deviance = 419.7616
***** The continuous distribution model *****
GAMLSS-RS iteration 1: Global Deviance = -1953.708
GAMLSS-RS iteration 2: Global Deviance = -2571.681
GAMLSS-RS iteration 3: Global Deviance = -2766.59
GAMLSS-RS iteration 4: Global Deviance = -2790.954
GAMLSS-RS iteration 5: Global Deviance = -2791.324
GAMLSS-RS iteration 6: Global Deviance = -2791.323
GAMLSS-RS iteration 7: Global Deviance = -2791.322
The Final Global Deviance = -2371.561

logitSST inflated at 1

\[t_{1sst} \leftarrow \text{gamlssInf0totol}(y = y_1, \text{mu.fo} = \text{pb}(x), \text{sigma.fo} = \text{pb}(x), \text{xi1.fo} = \text{pb}(x), \text{family} = \text{logitSST}, \text{trace} = \text{T}) \]

***** The binomial model *****
GAMLSS-RS iteration 1: Global Deviance = 420.6815
GAMLSS-RS iteration 2: Global Deviance = 419.762
GAMLSS-RS iteration 3: Global Deviance = 419.7616

logitSST inflated at 1

\[\text{genFamily}(\text{"SST"}, \text{"logit"}) \]

A logit family of distributions from SST has been generated
and saved under the names:
dlogitSST plogitSST qlogitSST rlogitSST logitSST

\[t_{1sst} \leftarrow \text{gamlssInf0totol}(y = y_1, \text{mu.fo} = \text{pb}(x), \text{sigma.fo} = \text{pb}(x), \text{xi1.fo} = \text{pb}(x), \text{family} = \text{logitSST}, \text{trace} = \text{T}) \]

***** The binomial model *****
GAMLSS-RS iteration 1: Global Deviance = 420.6815
GAMLSS-RS iteration 2: Global Deviance = 419.762
GAMLSS-RS iteration 3: Global Deviance = 419.7616
The continuous distribution model

GAMLSS-RS iteration 1: Global Deviance = -2753.826
GAMLSS-RS iteration 2: Global Deviance = -2776.583
GAMLSS-RS iteration 3: Global Deviance = -2782.89
GAMLSS-RS iteration 4: Global Deviance = -2783.245
GAMLSS-RS iteration 5: Global Deviance = -2783.26
GAMLSS-RS iteration 6: Global Deviance = -2783.272
GAMLSS-RS iteration 7: Global Deviance = -2783.27
GAMLSS-RS iteration 8: Global Deviance = -2783.27
The Final Global Deviance = -2363.508

truncated SST inflated at 1
generate a truncated distribution from 0 to 1
library(gamlss.tr)
gen.trun(c(0,1),"SST",type="both")

A truncated family of distributions from SST has been generated
and saved under the names:
dSSTtr pSSTtr qSSTtr rSSTtr SSTtr
The type of truncation is both
and the truncation parameter is 0 1
fit for starting values
m1 <- gamlss(y~pb(x), family=SST)
GAMLSS-RS iteration 1: Global Deviance = -3040.191
GAMLSS-RS iteration 2: Global Deviance = -3085.284
GAMLSS-RS iteration 3: Global Deviance = -3091.881
GAMLSS-RS iteration 4: Global Deviance = -3092.604
GAMLSS-RS iteration 5: Global Deviance = -3092.64
GAMLSS-RS iteration 6: Global Deviance = -3092.646
GAMLSS-RS iteration 7: Global Deviance = -3092.652
GAMLSS-RS iteration 8: Global Deviance = -3092.652

fit model
t1ssttr <- gamlssInf0toQ(y=y1, mu.fo="pb(x)", xi1.fo="pb(x)", sigma.fo="pb(x)", xi1.fo="pb(x)", family="SSTtr", sigma.start=fitted(m1,"sigma"), trace=T)

The binomial model

GAMLSS-RS iteration 1: Global Deviance = 420.6815
GAMLSS-RS iteration 2: Global Deviance = 419.762
GAMLSS-RS iteration 3: Global Deviance = 419.7616

The continuous distribution model

GAMLSS-RS iteration 1: Global Deviance = -2747.079
GAMLSS-RS iteration 2: Global Deviance = -2767.147
GAMLSS-RS iteration 3: Global Deviance = -2777.542
GAMLSS-RS iteration 4: Global Deviance = -2782.821
GAMLSS-RS iteration 5: Global Deviance = -2780.254
GAMLSS-RS iteration 6: Global Deviance = -2784.492
GAMLSS-RS iteration 7: Global Deviance = -2783.93
GAMLSS-RS iteration 8: Global Deviance = -2783.524
GAMLSS-RS iteration 9: Global Deviance = -2783.376
GAMLSS-RS iteration 10: Global Deviance = -2783.37
GAMLSS-RS iteration 11: Global Deviance = -2783.327
GAMLSS-RS iteration 12: Global Deviance = -2783.267
GAMLSS-RS iteration 13: Global Deviance = -2783.267
The Final Global Deviance = -2363.505

Below we fit a Tobit model and a Tobit SSD model, both right censored at 1 to provide a point probability at 1. Since $0 < Y \leq 1$ it may be preferable to fit a Tobit model from a distribution on $(0, \infty)$ censored at 1, for example example a BCG model, see Hossain et al. [2016a].

```r
# Tobit models
library(survival)
# creating the y variable as survival response
y1surv <- Surv(y1, y1!=1, type="right")
# creating the distributions
library(gamlss.cens)
gen.cens("SST", type="right")
## A censored family of distributions from SST has been generated
## and saved under the names:
## dSSTrc pSSTrc qSSTrc SSTrc
## The type of censoring is right
gen.cens("NO", type="right")
## A censored family of distributions from NO has been generated
## and saved under the names:
## dNOrc pNOrc qNOrc NOrc
## The type of censoring is right
# fitting the models
# tobit model
s1no <- gamlss( y1surv ~ pb(x), sigma.formula="pb(x),
                  family=NOrc)
```

GAMLSS-RS iteration 1: Global Deviance = -2150.399
GAMLSS-RS iteration 2: Global Deviance = -2228.728
GAMLSS-RS iteration 3: Global Deviance = -2240.273
GAMLSS-RS iteration 4: Global Deviance = -2242.955
GAMLSS-RS iteration 5: Global Deviance = -2243.266
GAMLSS-RS iteration 6: Global Deviance = -2243.183
GAMLSS-RS iteration 7: Global Deviance = -2243.183
GAMLSS-RS iteration 8: Global Deviance = -2242.996
GAMLSS-RS iteration 9: Global Deviance = -2242.931
GAMLSS-RS iteration 10: Global Deviance = -2242.88
GAMLSS-RS iteration 11: Global Deviance = -2242.842
GAMLSS-RS iteration 12: Global Deviance = -2242.815
GAMLSS-RS iteration 13: Global Deviance = -2242.795
GAMLSS-RS iteration 14: Global Deviance = -2242.781

45
GAMLSS-RS iteration 15: Global Deviance = -2242.771
GAMLSS-RS iteration 16: Global Deviance = -2242.764
GAMLSS-RS iteration 17: Global Deviance = -2242.759
GAMLSS-RS iteration 18: Global Deviance = -2242.756
GAMLSS-RS iteration 19: Global Deviance = -2242.753
GAMLSS-RS iteration 20: Global Deviance = -2242.752

Warning in RS(): Algorithm RS has not yet converged

generalised Tobit
s1sst <- gamlss(y1surv ~ pb(x), sigma.formula=~pb(x), family=SSTrc)

GAMLSS-RS iteration 1: Global Deviance = -1442.216
GAMLSS-RS iteration 2: Global Deviance = -1457.699
GAMLSS-RS iteration 3: Global Deviance = -1521.538
GAMLSS-RS iteration 4: Global Deviance = -1540.202
GAMLSS-RS iteration 5: Global Deviance = -1545.947
GAMLSS-RS iteration 6: Global Deviance = -1547.59
GAMLSS-RS iteration 7: Global Deviance = -1548.87
GAMLSS-RS iteration 8: Global Deviance = -1548.966
GAMLSS-RS iteration 9: Global Deviance = -1549.189
GAMLSS-RS iteration 10: Global Deviance = -1549.204
GAMLSS-RS iteration 11: Global Deviance = -1549.301
GAMLSS-RS iteration 12: Global Deviance = -1549.28
GAMLSS-RS iteration 13: Global Deviance = -1549.313
GAMLSS-RS iteration 14: Global Deviance = -1549.306
GAMLSS-RS iteration 15: Global Deviance = -1549.317
GAMLSS-RS iteration 16: Global Deviance = -1549.316

GAIC(g1p, g1p1, tlp, tlsst, tlssttr, s1no, s1sst)

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>tlp</td>
<td>12.386411</td>
<td>-2346.788</td>
</tr>
<tr>
<td>g1p</td>
<td>12.386737</td>
<td>-2346.788</td>
</tr>
<tr>
<td>g1p1</td>
<td>12.384038</td>
<td>-2346.774</td>
</tr>
<tr>
<td>tlssttr</td>
<td>16.141963</td>
<td>-2331.221</td>
</tr>
<tr>
<td>tlsst</td>
<td>17.785054</td>
<td>-2328.098</td>
</tr>
<tr>
<td>s1no</td>
<td>14.563539</td>
<td>-2213.625</td>
</tr>
<tr>
<td>s1sst</td>
<td>6.225857</td>
<td>-1536.865</td>
</tr>
</tbody>
</table>

Note that two of the model have not converged but those two will be no contestant for the best model.

6.5 Fitting a regression model on [0, 1]

Here we fit four different models to the data shown on the bottom of Figure 12. The models are:

- the BEINF distribution using `gamlss()`
- the beta inflated at zero and one using `gamlssInf0to1()`
- the inflated logitSST using `gamlssInf0to1()`
- the inflated truncated (at zero and one) SST using `gamlssInf0to1()`

```r
# BEINF using gamlss
g01p <- gamlss(y01 ~ pb(x), sigma.fo~pb(x), nu.fo~pb(x),
               tau.fo~pb(x),
               family=BEINF)
## GAMLLSS-RS iteration 1: Global Deviance = -993.1583
## GAMLLSS-RS iteration 2: Global Deviance = -1572.375
## GAMLLSS-RS iteration 3: Global Deviance = -1764.435
## GAMLLSS-RS iteration 4: Global Deviance = -1793.266
## GAMLLSS-RS iteration 5: Global Deviance = -1794.008
## GAMLLSS-RS iteration 6: Global Deviance = -1794.071
## GAMLLSS-RS iteration 7: Global Deviance = -1794.072
## GAMLLSS-RS iteration 8: Global Deviance = -1794.072
# Beta inflated using gamlssInf0to1
t01p <- gamlssinf0toQ(y=y01, mu.fo~pb(x), sigma.fo~pb(x),
                       xi0.fonto~pb(x), xi1.fonto~pb(x), trace=TRUE, family="BE")
## ****** The multinomial model ******
## GAMLLSS-RS iteration 1: Global Deviance = 729.0011
## GAMLLSS-RS iteration 2: Global Deviance = 726.3389
## GAMLLSS-RS iteration 3: Global Deviance = 726.3382
## ***** The continuous distribution model *****
## GAMLLSS-RS iteration 1: Global Deviance = -1722.205
## GAMLLSS-RS iteration 2: Global Deviance = -2298.72
## GAMLLSS-RS iteration 3: Global Deviance = -2490.773
## GAMLLSS-RS iteration 4: Global Deviance = -2519.604
## GAMLLSS-RS iteration 5: Global Deviance = -2520.346
## GAMLLSS-RS iteration 6: Global Deviance = -2520.402
## GAMLLSS-RS iteration 7: Global Deviance = -2520.41
## GAMLLSS-RS iteration 8: Global Deviance = -2520.41
## The Final Global Deviance = -1794.072
# logistic SST using gamlssInf0to1
gen.Family("SST", "logit")
## A logit family of distributions from SST has been generated
## and saved under the names:
## dlogitSST plogitSST qlogitSST rlogitSST logitSST
t01sst <- gamlssinf0toQ(y=y01, mu.fo~pb(x), sigma.fo~pb(x),
                        xi0.fonto~pb(x), xi1.fonto~pb(x), family="logitSST", trace=TRUE)
## ****** The multinomial model ******
## GAMLLSS-RS iteration 1: Global Deviance = 729.0011
## GAMLLSS-RS iteration 2: Global Deviance = 726.3389
## GAMLLSS-RS iteration 3: Global Deviance = 726.3382
## ***** The continuous distribution model *****
```

47
GAMLSS-RS iteration 1: Global Deviance = -2506.09
GAMLSS-RS iteration 2: Global Deviance = -2518.508
GAMLSS-RS iteration 3: Global Deviance = -2521.592
GAMLSS-RS iteration 4: Global Deviance = -2521.735
GAMLSS-RS iteration 5: Global Deviance = -2521.75
GAMLSS-RS iteration 6: Global Deviance = -2521.75
The Final Global Deviance = -1795.411

generate a truncated distribution from 0 to 1
m1 <- gamlss(y1 ~ pb(x), sigma.fo = ~ pb(x), family = SST, trace = FALSE)
gen.trun(c(0, 1), "SST", type = "both")

A truncated family of distributions from SST has been
saved under the names:
dSSTtr pSSTtr qSSTtr rSSTtr SSTtr
The type of truncation is both
and the truncation parameter is 0 1
t01ssttr <- gamlssInf0to1(y = y1, mu.fo = ~ pb(x), sigma.fo = ~ pb(x),
 xi0.fo = ~ pb(x), xi1.fo = ~ pb(x), family = "SSTtr",
 trace = TRUE, sigma.start = fitted(m1, "sigma"))

***** The binomial model *****
GAMLSS-RS iteration 1: Global Deviance = 420.6815
GAMLSS-RS iteration 2: Global Deviance = 419.762
GAMLSS-RS iteration 3: Global Deviance = 419.7616
***** The continuous distribution model *****
GAMLSS-RS iteration 1: Global Deviance = -2747.079
GAMLSS-RS iteration 2: Global Deviance = -2767.147
GAMLSS-RS iteration 3: Global Deviance = -2777.542
GAMLSS-RS iteration 4: Global Deviance = -2782.821
GAMLSS-RS iteration 5: Global Deviance = -2780.254
GAMLSS-RS iteration 6: Global Deviance = -2784.492
GAMLSS-RS iteration 7: Global Deviance = -2783.93
GAMLSS-RS iteration 8: Global Deviance = -2783.524
GAMLSS-RS iteration 9: Global Deviance = -2783.376
GAMLSS-RS iteration 10: Global Deviance = -2783.37
GAMLSS-RS iteration 11: Global Deviance = -2783.327
GAMLSS-RS iteration 12: Global Deviance = -2783.267
GAMLSS-RS iteration 13: Global Deviance = -2783.267
The Final Global Deviance = -2363.505

AIC(g01p, t01p, t01sst, t01ssttr)

Surprisingly the truncated SST distribution is doing well for this data set.
7 Conclusions

GAMLSS is a framework where different models can be fitted and compared. In this vignette, we have shown how models with response variable restricted to values from zero to one (including 0 and/or 1) can be fitted within the GALMSS framework.

The `gamlssInf0to1()` function can be used to fit a variety of different models in which the response variable lies between zero and one including zero and/or one. The function allows any continuous distribution on interval (0, 1), available in the `gamlss` packages, to be inflated with point probabilities at 0 and/or 1. The continuous distribution on (0, 1) can be a distribution that exists already within `gamlss.dist`, or it can be created using the `gen.Family()` or `gen.trun()` functions for transformed or truncated distribution, respectively. In addition function `gen.Inf0to1()` generates d, p, q, r and plot functions for a distribution defined between 0 and 1, inflated with point probability at 0 and/or 1.

More information about GAMLSS can be found in Stasinopoulos et al. [2017] or the GAMLSS website www.gamlss.org. We’re hoping that the `gamlss.inf` package will be useful.

References

